
Conflict Detection and Resolution for 1,2,. . . N Aircraft

Gilles Dowek∗ César Muñoz†

This paper presents a mathematical framework for the formal specification of aircraft
conflict detection and resolution algorithms and the verification of their properties. The
framework is illustrated with original algorithms that detect conflicts with multiple aircraft
and effectively solve all them via vertical speed-only maneuvers.

I. Introduction

Formal methods in computer science refers to the use of logic and mathematics to verify that a system
design and its implementation satisfy functional requirements and safety properties.1 Despite the fact that
several Conflict Detection and Resolution (CD&R) systems have been proposed in the past few years,2 very
few of these systems have been described and analyzed using formal methods. Therefore, it is not always
clear what properties these algorithms satisfy. For instance, the notion of cooperative resolution is often
used in the CD&R literature expressing different and, sometimes, contradictory concepts, e.g., it expresses
exchange of intent information,3–6 degree of coordination,2,7 sharing of effort to achieve separation,8 and
temporary delegation of responsibility for separation.9 This confusion could be avoided by providing rigorous
definitions of the concepts and properties that are fundamental to all CD&R systems.

This paper presents a mathematical framework for the formal specification and analysis of conflict de-
tection and resolution algorithms and their properties. This framework applies to state-based, pairwise,
geometric, and distributed conflict detection and resolution algorithms. State-based (or tactical) refers to
the use of aircraft state information, e.g., position and velocity vectors, as opposed to strategic approaches
that use intent information, e.g., flight plan. Pairwise refers the use of a conflict detection and resolution
logic for two distinguished aircraft: the ownship and the traffic aircraft. Geometric refers to the use of lin-
ear projections to predict aircraft trajectories as opposed to probabilistic or performance-based trajectories.
Finally, distributed refers to systems that are deployed on several aircraft detecting and solving conflicts for
the ownship as opposed to centralized systems that detect and simultaneously solve conflicts for a large set
of aircraft. The distributed approach that we consider in this framework requires minimal communication
between the aircraft. In particular, the only information that is periodically exchanged between the aircraft
is the state information, e.g., position and velocity vectors of the aircraft. Examples of algorithms and ap-
proaches that are included in this framework are the self-organizational approach,10 the modified potential
algorithm,7 the geometric optimization approach,8 and the KB3D algorithm and its extensions.11–14

This paper is organized as follows. Section II provides the geometric background for state-based conflict
detection and resolution. The CD&R framework is presented in Section III, for conflict detection, and
Section IV, for conflict resolution. These sections illustrate the use of the framework with original conflict
detection and resolution algorithms for multiple aircraft. The mathematical development presented in this
paper has been formally verified in the Program Verification System (PVS).15

II. Geometric Background

We assume a flat earth geometry where position and velocity vectors are given in Cartesian coordinates.
Aircraft dynamics is represented by a point moving at constant speed along a linear trajectory. Therefore,
aircraft trajectories can be described by a position, a velocity vector, and a time interval. We also assume
that in order to solve a conflict an aircraft can instantaneously change course and speed. These assumptions
are typical of tactical CD&R systems with short lookahead times (usually, 5 minutes).
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The state information of an aircraft is represented by an identifier, a position, and a velocity vector.
Identifiers are assumed to be unique and invariant, i.e., (1) there are no two different aircraft in the airspace
with the same identifier, and (2) the identifier of an aircraft does not change over time. By abuse of notation,
we will usually refer to an aircraft by its state. Henceforth, we use letters A,B, . . . to denote aircraft states,
boldface letters to denote vector variables, e.g., s denotes position and v denotes velocity, and typewriter
type for algorithms. When a vector variable refers to a particular aircraft, the variable is sub-indicated by
the aircraft state. For instance the current position and velocity vectors of an aircraft A are denoted sA

and vA, respectively. As usual, sub-indices x, y, and z denote axis values, e.g., vAx, vAy are the horizontal
components of the velocity vector vA.

Each aircraft A in the airspace is surrounded by an imaginary region called the protected zone. The
protected zone defines a minimum safe separation distance between aircraft. In a 2-dimensional geometry,
the protected zone is usually defined as a circle of diameter D around sA, i.e., the set points (x, y) that
satisfy √

(x− sAx)2 + (y − sAy)2 <
D

2
.

In a 3-dimensional geometry, a spherical protected zone can defined as the set of points (x, y, z) that satisfy√
(x− sAx)2 + (y − sAy)2 + (z − sAz)2 <

D

2
.

However, the preferred 3-dimensional shape of the protected zone is a flat cylinder of diameter D and height
H. In this case, the cylindrical volume around an aircraft A is defined as the set of points (x, y, z) that
satisfy √

(x− sAx)2 + (y − sAy)2 <
D

2
, and

|z − sAz| <
H

2
.

All these concrete definitions of protected zone are particular instances of a more general abstract defi-
nition.

Definition 1 (Protected Zone) The protected zone of an aircraft A is defined as the set of points PA,
such that

PA = { x | ‖sA − x‖ <
1
2
}, (1)

where ‖.‖ is a vector norm, i.e., an operation from vectors to real number that satisfies:

1. Positivity: ‖x‖ ≥ 0.

2. Nullity: ‖x‖ = 0 if and only if x = 0.

3. Scalability: ‖kx‖ = |k|‖x‖.

4. Triangular inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖.

If the protected zone is a circle or a sphere of diameter D, the norm of a vector x is defined as the
Euclidean norm of the vector x divided by D:

‖(x, y, z)‖ =

√
x2 + y2

D
, in a 2-dimensional geometry, and (2)

‖(x, y, z)‖ =

√
x2 + y2 + z2

D
, in a 3-dimensional geometry. (3)

In the case of a cylinder of diameter D and height H, the norm is defined as

‖(x, y, z)‖ = max(

√
x2 + y2

D
,
|z|
H

). (4)
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Proposition 1 Formulas (2), (3), and (4) are well-defined vector norms, i.e., they satisfy positivity, nullity,
scalability, and triangular inequality.

The use of a norm allows for definitions of aircraft distance and loss of separation that are independent
of the shape of the protected zone.

Definition 2 (Distance) The distance between aircraft A and B is defined as

∆(A,B) = ‖sA − sB‖. (5)

Definition 3 (Loss of Separation) A loss of separation or violation occurs when the protected zones of
two aircraft overlap, e.g.,

PA ∩ PB 6= ∅. (6)

The notions of loss of separation and aircraft distance are related by the following proposition.

Proposition 2 Aircraft A and B are in loss of separation if and only if

∆(A,B) < 1.

The linear trajectory of an aircraft is predicted from the current state of the aircraft, where the velocity
of the aircraft is assumed to be constant.

Definition 4 (Predicted State) The predicted state of an aircraft A at future time t relative to a current
time 0, denoted A(t), satisfies:

sA(t) = sA + tvA,

vA(t) = vA.

A conflict is a predicted loss of separation between two aircraft within a lookahead time T .

Definition 5 (Conflict) Aircraft A and B are said to be in conflict if there is a time t in the future but
before the lookahead time, i.e., 0 ≤ t ≤ T , such that the distance between the aircraft at time t is strictly less
than 1:

∆(A(t), B(t)) < 1. (7)

Conflicts are usually checked by comparing the predicted closest separation of two aircraft against the
minimum safe distance defined by the protected zone.

Definition 6 (Time of Closest Separation) The time of closest separation between aircraft A and B
within a lookahead time T , denoted τT (A,B), is the smallest time τ , 0 ≤ τ ≤ T , such that for any time t,
0 ≤ t ≤ T :

∆(A(τ), B(τ)) ≤ ∆(A(t), B(t)). (8)

Note that the time of closest separation always exists because ∆ is a continuous function and the time
range 0 ≤ t ≤ T defines a close interval.

Definition 7 (Distance of Closest Separation) The distance of closest separation between two aircraft
A and B, within a lookahead time T , is the distance at the time of closest separation, i.e.,

δT (A,B) = ∆(A(τT (A,B)), B(τT (A,B))). (9)

The following proposition provides an alternative definition of conflict based on distance of closest sepa-
ration.

Proposition 3 Aircraft A and B are in conflict if and only if δT (A,B) < 1.
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In our framework, a resolution maneuver is modeled as an instantaneous change of the velocity vector of
the current aircraft state.

Definition 8 (Resolution Maneuver) A resolution maneuver RA is a new state for an aircraft A that
(only) modifies the value of the current velocity vector. The new velocity vector for aircraft A under maneuver
RA is denoted vRA

.

Resolution maneuvers can be classified according to the parameters of the velocity vector that they
modify. Assuming a 3-dimensional geometry:

• RA is a track-only maneuver if vRAx
2 + vRAy

2 = vAx
2 + vAy

2 and vRAz = vAz.

• RA is a ground speed-only maneuver if vRAz = vAz and there is a positive k such that (vRAx, vRAy) =
k(vAx, vAy).

• RA is a vertical speed-only maneuver if vRAx = vAx and vRAy = vAy.

Resolution maneuvers can also be classified according to the separation criteria that they satisfy. Let RA

and RB be resolution maneuvers for aircraft A and B,

• RA is an independent resolution for aircraft A (with respect to aircraft B) if δT (RA, B) ≥ 1. If
δT (RA, B) = 1, RA is also tangential.

• RA and RB are coordinated if δT (RA,RB) ≥ 1. If δT (RA,RB) = 1, they are also minimal.

• RA and RB are repulsive if δT (RA,RB) > δT (A,B).

III. Conflict Detection

This section presents our mathematical framework for the specification of conflict detection algorithms
and their safety properties. It illustrates the use of the framework with a three dimensional conflict detection
algorithm for multiple aircraft.

III.A. Pairwise Conflict Detection

A (pairwise) conflict detection algorithm takes as parameters the current state of two aircraft, and returns
a Boolean value that indicates a predicted loss of separation between them.

Definition 9 (Conflict Detection Correctness and Completeness) Given a lookahead time T , a con-
flict detection algorithm, namely cd, is correct if only conflicts are detected, i.e., for all aircraft states A
and B, if cd(A,B) returns true then A and B are in conflict. The algorithm is complete if all conflicts are
detected, i.e., if A and B are in conflict then cd(A,B) returns true.

Note that according to the previous definition, an algorithm that always returns true is complete, but
not correct, and an algorithm that always returns false if correct, but not complete.

Proposition 4 If cd is correct and complete then cd is symmetric, i.e., for all aircraft states A and B,
cd(A,B) if and only if cd(B,A).

III.B. Conflict Detection for Multiple Aircraft

A detection algorithm for multiple aircraft ~cd takes as parameters the current state of the ownship A and a
set of aircraft states α where A 6∈ α, and returns a Boolean value that indicates a predicted loss of separation
between A and any aircraft in α.

Definition 10 (Conflict Detection Correctness and Completeness for Multiple Aircraft) Given a
lookahead time T , a conflict detection algorithm for multiple aircraft, namely ~cd, is correct if for all aircraft
state A and set of aircraft states α, where A 6∈ α, if ~cd(A,α) returns true then A is in conflict with an
aircraft B ∈ α. The algorithm is complete if every time that A 6∈ α and B ∈ α are in conflict then ~cd(A,α)
returns true.
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Definition 11 A pairwise conflict detection algorithm cd can be transformed into a conflict detection algo-
rithm for multiple aircraft ~cd as follows:

~cd(A,α): bool =
if α = ∅ then
false

else let B ∈ α in
cd(A,B) or ~cd(A,α \ {B})

endif

The algorithm ~cd is recursive. However, it is well-defined since the cardinality of the set of aircraft strictly
decreases at each iteration.

Proposition 5 If cd is a pairwise correct and complete conflict detection algorithm then ~cd is a correct and
complete conflict detection algorithm for multiple aircraft.

III.C. A 3-Dimensional Detection Algorithm for Multiple Aircraft

KB3D is a pairwise state-based CD&R system co-developed by the authors11 and formally verified in the
Program Verification System (PVS).15 In this section, we illustrate our conflict detection framework with a
simplified version of the conflict detection algorithm used by KB3D, which we call cd3d.

The protected zone in KB3D is cylinder of diameter D and height H. Therefore, the norm is defined as
in Formula (4). The conflict detection logic considers the following cases:

• The relative horizontal velocity of the aircraft is zero, i.e., vx
2 + vy

2 = 0, and the aircraft have
already lost horizontal separation, i.e., sx

2 + sy
2 < D2. In this case, the aircraft are in conflict if they

have already lost vertical separation, i.e., |sz| < H, or if they will lose vertical separation within the
lookahead time T , i.e., vzsz < 0 and −H < sign(vz)(Tvz + sz).

• The relative vertical speed of the aircraft is zero, i.e., vz = 0, but the aircraft are horizontally separated.
First, we compute the time interval of horizontal conflict [tDin , tDout ] from the quadratic equation on t:

(sx + tvx)2 + (sy + tvy)2 = D2.

In this case, there is a conflict if the aircraft have already lost vertical separation, i.e., |sz| < H, and
if the time interval of horizontal conflict is within the lookahead time T , i.e., tDout > 0 and tDin < T .

• In the general case, we compute the time interval of horizontal conflict [tDin
, tDout

] as in the previous
case, and the time interval of vertical conflict [tHin , tHout ] from the equation on t:

|sz + tvz| = H.

From these intervals, we compute the time interval of conflict [tin, tout], where

tin = max(tDin , tHin),
tout = min(tDout , tHout).

In this case, there is a conflict if this interval is within the lookahead time T , i.e., tin < tout and tout > 0
and tin < T .

The pairwise algorithm cd3d is defined as follows.

cd3d(A,B): bool =
let s = sA − sB in
let v = vA − vB in
if vx

2 + vy
2 = 0 and sx

2 + sy
2 < D2 then

|sz| < H or
(vz sz < 0 and −H < sign(vz) (T vz + sz))

else
let d = 2 sx vx sy vy + D2 (vx

2 + vy
2) − (sx

2 vy
2 + sy

2 vx
2) in
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if d > 0 then
let a = vx

2 + vy
2 in

let b = sx vx + sy vy in

let tDin = (−b −
√

d)/a in
let tDout = (−b +

√
d)/a in

if vz = 0 then
|sz| < H and tDout > 0 and tDin < T

else
let tHin

= (−sign(vz) H − sz)/vz in
let tHout = (sign(vz) H − sz)/vz in
let tin = max(tDin , tHin) in
let tout = min(tDout , tHout) in

tin < tout and tout > 0 and tin < T
endif

else false
endif

endif

Proposition 6 The conflict detection algorithm cd3d is correct and complete.

The following theorem is a corollary of Propositions 5and 6.

Theorem 7 The conflict detection algorithm for multiple aircraft ~cd3d, from Definition 11, is correct and
complete.

IV. Conflict Resolution

This section presents our mathematical framework for the specification of conflict resolution algorithms
and their safety properties. Based on this framework, we propose an original vertical-only resolution algo-
rithm for multiple aircraft.

IV.A. Pairwise Conflict Resolution

A (pairwise) conflict resolution algorithm takes as parameters the current state of two aircraft, the ownship
and the traffic aircraft, and returns a set of possible resolution maneuvers for the ownship. Henceforth, we
assume that conflict resolution algorithms are only applied to conflicting aircraft, i.e., aircraft A and B that
are in conflict within a lookahead time T : δT (A,B) < 1, but not in violation: ∆(A,B) ≥ 1.

Completeness of a conflict resolution algorithm refers to the existence of at least one resolution maneuver
for every pair of conflicting aircraft.

Definition 12 (Conflict Resolution Completeness) A conflict resolution algorithm, namely cr, is com-
plete if for all conflicting aircraft A and B, cr(A,B) is non-empty.

We define several notions of conflict resolution correctness depending on the number of aircraft that
maneuver to resolve a predicted conflict. For one aircraft, the correctness property is called independence,
for two or more aircraft is called coordination.

IV.B. Conflict Resolution for One Aircraft

A basic assumption in a distributed conflict resolution approach is that only one aircraft, e.g., the ownship,
maneuvers. In this case, the traffic aircraft is assumed to keep its current trajectory.

Definition 13 (Independent Conflict Resolution) A conflict resolution algorithm, namely cr, is inde-
pendent if and only if all resolutions computed by the algorithm are independent for the ownship, i.e., for
all conflicting aircraft A and B:

RA ∈ cr(A,B) implies δT (RA, B) ≥ 1.
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Note that a conflict resolution algorithm that is independent guarantees a minimum safe separation
distance between the ownship and traffic aircraft when only the ownship maneuvers.

Definition 14 (Tangential Resolution) A conflict resolution algorithm cr is tangential if all resolutions
computed by the algorithm are tangential, i.e., for all conflicting aircraft A and B:

RA ∈ cr(A,B) implies δT (RA, B) = 1.

The following property is a corollary of Definitions 13 and 14.

Proposition 8 All tangential algorithms are independent.

IV.C. Conflict Resolution for Two Aircraft

In contrast to independent conflict resolution algorithms, where the resolution effort relies on the ownship,
a coordinated algorithm assumes that both the ownship and traffic aircraft potentially maneuver to avoid
an impending conflict.

Definition 15 (Coordinated Conflict Resolution) A conflict resolution algorithm cr is coordinated if
all resolutions computed by the algorithm are pairwise coordinated, i.e., for all conflicting aircraft A and B:

RA ∈ cr(A,B) and RB ∈ cr(B,A) implies δT (RA,RB) ≥ 1.

Definition 16 (Minimal Resolution) A conflict resolution algorithm cr is minimal if all resolutions com-
puted by the algorithm are pairwise minimal, i.e., for all conflicting aircraft A and B:

RA ∈ cr(A,B) and RB ∈ cr(B,A) implies δT (RA,RB) = 1.

The following property is a corollary of Definitions 15 and 16.

Proposition 9 All minimal algorithms are coordinated.

The concepts of independent and coordinated conflict resolution are orthogonal. Section V presents
examples of resolution algorithms that are independent without being coordinated, coordinated without
being independent, and coordinated and independent simultaneously. Furthermore, any independent conflict
resolution algorithm can be transformed into a coordinated algorithm by using a priority relation between
aircraft. If the priority relation is known to all aircraft, coordination can be achieved without a central
authority. The priority relation could be as simple as an order over aircraft identifiers. It does not need to
be constant under time. However, at a given time all aircraft have to use the same priority relationship.

Formally, a priority relation is a strict order over aircraft states. We write A ≺ B to denote that aircraft
A has priority over aircraft B at current time.

Definition 17 Let cr be a conflict resolution algorithm, the resolution algorithm cr≺ is defined as follows.

cr≺(A,B): set =
if A ≺ B then
{ A }

else
cr(A,B)

endif

Proposition 10 If the pairwise conflict resolution cr is independent, then cr≺ is coordinated.

Definition 18 (Repulsive Resolution) A conflict resolution algorithm cr is repulsive if all resolutions
computed by the algorithm are pairwise repulsive, i.e., for all conflicting aircraft A and B:

RA ∈ cr(A,B) and RB ∈ cr(B,A) implies δT (RA,RB) > δT (A,B).

In contrast to coordinated resolutions, repulsive resolutions separate but not necessarily solve a conflict.
However, the iteration of a repulsive algorithm is expected to eventually solve the conflict.
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Definition 19 Let cr be a conflict resolution algorithm, we define the algorithm crn recursively on n ≥ 0:

crn(A,B): set =
if n = 0 then
{ A }

else
R := ∅;
foreach RA ∈ cr(A,B) do
foreach RB ∈ cr(B,A) do
R := R ∪ crn−1(RA,RB)

done
done
R

endif

Despite the expectation, the iteration of a repulsive conflict resolution algorithm does not always yield
a coordinated algorithm. This is not even the case if the iteration is performed infinitely many times.
We provide sufficient conditions for finite and infinite convergence of repulsive algorithms into coordinated
algorithms.

Proposition 11 (Definite Convergence) Let cr be a repulsive conflict resolution algorithm and ε be a
strictly positive constant, i.e., ε > 0. If for any pair of conflicting aircraft A and B, and resolution maneuvers
RA ∈ cr(A,B) and RB ∈ cr(B,A), it holds that

δT (RA,RB)− δT (A,B) ≥ ε,

then there exists a natural number N such that crN is a coordinated conflict resolution algorithm.

Proposition 12 (Eventual Convergence) Let cr be a repulsive conflict resolution algorithm and γ be a
positive constant strictly less than 1, i.e., 0 ≤ γ < 1. If for any pair of conflicting aircraft A and B, and
resolution maneuvers RA ∈ cr(A,B) and RB ∈ cr(B,A), it holds that

γ(1− δT (A,B)) + δT (RA,RB) ≥ 1,

then there exists a number N ≤ ∞ such that crN is a coordinated conflict resolution algorithm.

IV.D. Conflict Resolution for Multiple Aircraft

Pairwise conflict resolution algorithms are not, in general, sufficient to solve multiple aircraft conflicts.
Indeed, if an aircraft A is in conflict with aircraft B and C, it may happen that none of the pairwise
resolutions for A solves both conflicts simultaneously. Multiple aircraft conflicts require resolution algorithms
that take into account the state of several aircraft at the same time.

A resolution algorithm for multiple aircraft ~cr takes as parameters the current state of the ownship A and
a set of aircraft states α where A 6∈ α, and returns a set of possible resolution maneuvers for the ownship.

Definition 20 (Separated and Solved Aircraft) A set of aircraft states α is separated if aircraft in α
are pairwise separated, i.e., for all A,B ∈ α, where A and B are different aircraft, ∆(A,B) ≥ 1 holds. The
set α is solved if aircraft are pairwise free of conflicts, i.e., for all A,B ∈ α, where A and B are different
aircraft, δT (A,B) ≥ 1 holds.

Definition 21 (Independent Resolution for Multiple Aircraft) A resolution algorithm for multiple
aircraft ~cr is independent for the ownship A and the set of aircraft α, where A 6∈ α, if for any resolution
RA ∈ ~cr(A,α), and for any aircraft B ∈ α, δT (RA, B) ≥ 1.

Definition 22 (Coordinated Resolution for Multiple Aircraft) A resolution algorithm for multiple
aircraft ~cr is coordinated for N aircraft if for any set of separated aircraft α containing at most N aircraft,
all sets of the form {RA0 , . . . ,RAm}, where RAi ∈ ~cr(Ai, α \ {Ai}), are solved.
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We note that pairwise resolution algorithms are a special case of resolution algorithms for multiple aircraft
where the set of aircraft is a singleton. Indeed, the pairwise coordinated algorithms are the coordinated
algorithms for 2 aircraft.

As in the case of pairwise conflict resolution, resolution algorithms for multiple aircraft can be iterated.

Definition 23 Let ~cr be a resolution algorithm for multiple aircraft, we define the algorithm ~crn by induc-
tion on n ≥ 0 as follows.

~crn(A,{A0, . . . , Am}): set =
let α = {A0, . . . , Am} in
if n = 0 then
{ A }

else
R := ∅;
foreach RA ∈ ~cr(A,α) do
foreach RA0 ∈ ~cr(A0, α \A0 ∪ {A}) . . . RAm ∈ ~cr(Am, α \Am ∪ {A}) do
R := R ∪ ~crn−1(RA,{RA0 , . . . ,RAm})

done
done
R

endif

The rest of this section gives a sufficient condition that guarantees that the iteration of a resolution
algorithm for multiple aircraft is coordinated.

Definition 24 (≺-Segment) Let ≺ be a priority relation that is stable by velocity changes. The ≺-segments
of a set of aircraft states α are the downward close subsets of α. That is, β is a ≺-segment of α if and only
if

1. β ⊆ α, and

2. for all A ∈ α and B ∈ β, if A ≺ B then A ∈ β.

The cardinality of the greatest solved ≺-segment of α is denoted [α].

Definition 25 (Progressive Resolution) A resolution algorithm for multiple aircraft ~cr is progressive if
it increases the size of solved ≺-segments, i.e., for all α and all sets of the form {RA0 , . . . ,RAm

}, where
RAi ∈ ~cr(Ai, α \ {Ai}), it holds that [α] < [{RA0 , . . . ,RAm}].

Proposition 13 If the conflict resolution algorithm for multiple aircraft ~cr is progressive, then ~crN is
coordinated for N aircraft.

IV.E. A Vertical Resolution Algorithm for Multiple Aircraft

Given a conflict between the ownship and a traffic aircraft, KB3D outputs a set of maneuvers for the ownship
that modify only one parameter of the aircraft, e.g., ground speed-only, ground track-only, and vertical
velocity-only. It has been formally shown that KB3D supports independent and coordinated resolutions.13

The algorithm has also been extended with recovery maneuvers that satisfy time arrival constraints.16 This
section presents a simple coordinated algorithm for N aircraft, based on the vertical resolutions computed
by KB3D.

Let ≺ be the priority relation defined by A ≺ B if and only if

sAz < sBz or (sAz = sBz and sAx < sBx) or (sAz = sBz and sAx = sBx and sAy < sBy).

As two aircraft cannot be at the same time at the same position, if A and B are different aircraft then either
A ≺ B or B ≺ A.

Consider two conflicting aircraft: ownship and traffic, denoted respectively by O and I. We assume that
I ≺ O, i.e., the traffic aircraft is lower than the ownship. In other words, we assume that the ownship aircraft
maneuvers because the traffic aircraft has the right of way.
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A tangential independent vertical-only resolution maneuver RO for the ownship satisfies

δT (RO, I) = 1,

vROx = vOx, and
vROy = vOy.

Therefore,

sRO(t) = (sOx + tvOx, sOy + tvOy, sROz + tvROz) for all t. (10)

From Formulas (9), ∆(RO(τ), I(τ)) = 1, where τ is the time of closest separation for aircraft states RO

and I. Let s = sO − sI , v = vO − vI , v′ = vRO
− vI ,

∆(RO(τ), I(τ)) = 1
‖sI(τ) − sRO(τ)‖ = 1, from Formula (5)

max(

√
s2

x(τ) + s2
y(τ)

D
,
|sz + τv′z|

H
) = 1, from Formulas (4) and (10)

max(

√
(sx + τvx)2 + (sy + τvy)2

D
,
|sz + τv′z|

H
) = 1.

Thus, both expressions
√

(sx+τvx)2+(sy+τvy)2

D and |sz+τv′
z|

H are less than or equal to 1 and one of them is
equal to 1. Studying the variation of these expressions in the neighborhood of τ we can prove that actually
both expressions are equal to 1. Therefore, the solutions touch the top or the bottom circle of the protected
zone, i.e., √

(sx + τvx)2 + (sy + τvy)2

D
= 1, and (11)

|sz + τv′z|
H

= 1. (12)

Formula (11) is a quadratic equation with two possible solutions for τ :

τ± =
−sxvx − syvy ±

√
discr(sx, sy, vx, vy)

v2
x + v2

y

,

where

discr(sx, sy, vx, vy) = D2(v2
x + v2

y)− (sxvy − syvx)2.

Since the aircraft are in conflict but not in violation, there is a time t where the aircraft lose horizontal
separation, i.e., √

(sx + tvx)2 + (sy + tvy)2

D
< 1.

Thus, discr(sx, sy, vx, vy) > 0. If the relative ground speed of the aircraft is non-zero, i.e., v2
x + v2

y 6= 0,
the two solutions for τ exists and τ− < τ+. Consider the solution for τ that touches the top circle of the
protected zone. Figures 1 and 2 illustrate the cases sz ≥ H and sz < H, respectively. The time τ that yields
a vertical solution is given by

τ =

{
τ+ if sz ≥ H,

τ− otherwise.

When the relative ground speed of the aircraft is non-zero, Formula (12) yields the following vertical
resolution maneuver that always touches the top circle of the protected zone:

vROz = vIz +
H − sz

τ
if v2

x + v2
y 6= 0. (13)
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Figure 1. sz ≥ H

Figure 2. sz < H

In the case where the relative ground speed is zero, a possible vertical solution maneuver is:

vROz = vIz if v2
x + v2

y = 0. (14)

The vertical speed-only resolution algorithm kv3d is defined by Formulas (13) and (14) as follows.

kv3d(O,I): set =
let s = sO − sI in
let v = vO − vI in
let vROz =
if vx

2 + vy
2 = 0 then

vIz

else
vIz + (H − sz)/τ

endif in
{ (vx, vy, vROz) }

Proposition 14 The pairwise algorithm kv3d is a tangential independent vertical speed-only resolution al-
gorithm.

Finally, we define the resolution algorithm for multiple aircraft ~kv3d as follows.

~kv3d(O,α): set =
let β = { A | A ≺ O and δT (O,A) < 1 } in
if β = ∅ then
{ O }

else
let I ∈ β in
let O′ = kv3d(O,I) in

~kv3d(O′, α \ {I})
endif

The algorithm ~kv3d is recursive. However, it is well-defined since the cardinality of the set of aircraft strictly
decreases at each iteration. Moreover, the algorithm is non-deterministic as an arbitrary aircraft I is chosen
at each iteration. Once this conflict is solved, solving a conflict with another aircraft will only increase the
vertical resolution further. Therefore, when the recursion terminates the ownship has solved all conflicts
with the aircraft below it. From this, it can be proved that ~kv3d is progressive.

Proposition 15
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1. ~kv3d is independent for the ownship and the set of aircraft that are below it.

2. ~kv3d is progressive.

The following theorem is a corollary of Propositions 13 and 15.

Theorem 16 The conflict resolution algorithm for multiple aircraft ~kv3d
N

, from Definition 23, is coordi-
nated for N aircraft.

V. Conclusion

We have presented a framework, i.e., a set of mathematical definitions, that enables the characterization of
state-based conflict detection and resolution algorithms for different assumptions on the number of aircraft
that maneuver to resolve a conflict. Furthermore, we identify sufficient conditions that guarantee that
these algorithms satisfy properties such as correctness and completeness. The framework is illustrated
with examples of original conflict detection and conflict resolution algorithms for multiple aircraft that are
complete and correct.

The characterization of CD&R algorithms that we propose in this work, complements less rigorous, but
more general, characterizations as the one proposed by Kuchar and Yang.2,17 For instance, Table 1 classifies
the following pairwise state-based conflict resolution algorithms according to the properties they satisfy.

• VP: Self-organizational voltage potential algorithm.10

• MVP: Modified voltage potential algorithm.7

• GO: Geometric optimization algorithm, “non-cooperative” setting.8

• GO-coop: Geometric optimization algorithm, “cooperative” setting.8

• KB3D: Original version.11

• KB3D-coord: Coordinated version.13

Property VP MVP GO GO-coop KB3D KB3D-coord

Completeness
√ √

Independence ×
√

×
√ √

Tangentiality ×
√

×
√ √

Coordination × ×
√

×
√

Minimality × ×
√

× ×
Repulsion

√ √
×

√
×

√

Table 1. Properties of CD&R algorithms

The check symbol (
√

) represents properties that are claimed to be satisfied by the developers of the
algorithms, while the cross symbol (×) represents properties that are known not to hold. Blanks represent
properties whose satisfiability is unknown to the authors of this paper.

Finally, we stress that the mathematical development presented in this paper has been formally specified
and verified in a mechanical theorem prover. Given the critical nature of CD&R systems, we believe that the
use of formal methods is an essential step in the analysis, design, and implementation of the new generation
of distributed air traffic management concepts.
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